Mathematics - Course 421

STANDARD NOTATION

Introduction to Powers of 10

A power of 10 consists of the base 10 raised to some exponent:

10ⁿ stands for n factors of 10. For example,

 $10^5 = 10 \times 10 \times 10 \times 10 \times 10$

Definitions:____

 10-n	=	$\frac{1}{10^n}$	
10°	=	1	_

```
Thus:

10^{3} = 1000

10^{2} = 100

10^{1} = 10

10^{0} = 1

10^{-1} = .1

10^{-2} = .01

10^{-3} = .001

.
```

Powers of 10 are multiplied according to the format,

$$10^{n} \times 10^{m} = 10^{n+m}$$
,

since (n factors of 10) x (m factors of 10) = (m+n) factors of 10. Powers of 10 are divided according to the format,

$$\frac{10^n}{10^m} = 10^{n-m}$$

August 1978

- 1 -

Example 1:	$10^5 \times 10^8 = 10^{5+8} = 10^{13}$
Example 2:	$10^8 \times 10^{-5} = 10^{8+(-5)} = 10^3$
<u>Example 3</u> :	$\frac{10^5}{10^8} = 10^5 - 8 = 10^{-3}$
Example 4:	$\frac{10^8}{10^{-5}} = 10^{8-(-5)} = 10^{13}$
Example 5:	$\frac{10^5 \times 10^{-7} \times 10^3}{10^{-11} \times 10^3} = \frac{10^5 + (-7) + 3}{10^{-11+3}}$
	$= \frac{10^{1}}{10^{-8}}$
	$= 10^{1-(-8)}$
	$= 10^{9}$

Combining Powers of 10 with Decimal Coefficients

A power of 10 can be combined with a decimal coefficient,

eg, 4.1×10^{6} \uparrow power of 10 coefficient

Recall that shifting the decimal point left one place decreases a number by a factor of 10. Thus the decimal may be shifted left n places in a number if it is multiplied by 10^n to compensate.

eg, $4 = .4 \times 10^{1}$ = .04 × 10² = .004 × 10³ etc.

Similarly, shifting the decimal point right one place increases a number by a factor of 10. Thus the decimal may be shifted right n places if the number is multiplied by 10^{-n} to compensate.

- 2 -

eg, 4. = 40, x
$$10^{-1}$$

= 400, x 10^{-2}
= 4000, x 10^{-3}
etc.

Example 1: $5280 = 5.280 \times 10^{3}$ Example 2: $0.0043 = 4.3 \times 10^{-3}$ Example 3: $65.4 \times 10^{2} = 6.54 \times 10^{2} \times 10$ $= 6.54 \times 10^{3}$ (1 move left \Rightarrow 1 additional factor of 10 \Rightarrow exponent increases by 1) Example 4: $0.0571 \times 10^{-6} = 5.71 \times 10^{-6} \times 10^{-2}$ $= 5.71 \times 10^{-8}$

(2 moves right ⇒ exponent decreases by 2)

Standard Notation

To express a number in standard notation (S.N.) rewrite the number with one nonzero digit left of the decimal point, and multiply by a power of 10 to compensate.

Example 1: Distance travelled by light in one year, ie, one light year is

 $9,460,000,000,000,000 = 9.46 \times 10^{15}$ meters

Example 2: Fission cross section of U²³⁵ nucleus, for thermal neutrons is

 $0.000,000,000,000,000,000,000,58 = 5.8 \times 10^{-22} \text{ cm}^2$

Example 3: $613 \times 10^4 = 6.13 \times 10^6$

Advantages of Standard Notation

 Convenient notation for very large or very small numbers (cf Examples 1 and 2 above), for both ease of writing and ease of comparison.

- (2) Facilitates rapid mental calculation.
- (3) Shows number of significant figures explicitly, where ambiguity might exist in ordinary decimal notation (cf lesson 421.10-2).

The Four Basic Operations with Numbers in Standard Notation

1. Add numbers in standard notation according to the format,

 $a \times 10^{n} + b \times 10^{n} = (a + b) \times 10^{n}$

Note that both numbers must have the same power of 10, and that the power of 10 does not change in the addition (similarly for subtraction). Example 1: $2 \times 10^3 + 3 \times 10^3 = (2 + 3) \times 10^3$ $= 5 \times 10^3$ Example 2: $4.73 \times 10^{-5} + 2.18 \times 10^{-5} = 6.91 \times 10^{-5}$ Example 3: $6.93 \times 10^8 + 4.51 \times 10^6$ $= 6.93 \times 10^8 + 4.51 \times 10^6$ (convert to same powers) $= 6.98 \times 10^8$ (Sum justified to 2 D.P.) Example 4: $9.78 \times 10^{12} + 5.14 \times 10^{11}$ $= 9.78 \times 10^{12} + .514 \times 10^{12}$ (convert to same powers) $= 10.29 \times 10^{12}$ (Sum justified to 2 D.P.) $= 1.029 \times 10^{13}$ (Adjust decimal, power to recover answer in S.N.)

2. Subtract numbers in standard notation according to the format,

 $a \ge 10^n - b \ge 10^n = (a - b) \ge 10^n$

Example 1: $7 \times 10^5 - 3 \times 10^5 = 4 \times 10^5$

Example 2: $4.65 \times 10^{-8} - 9.24 \times 10^{-10}$ = $4.65 \times 10^{-8} - 0.0924 \times 10^{-8}$ (convert to same powers) = 4.56×10^{-8} (difference justified to 2 D.P.) Example 3: $6.25 \times 10^{12} - 11.3 \times 10^{13}$ = $0.625 \times 10^{13} - 11.3 \times 10^{13}$ (convert to same powers) = -10.7×10^{13} (difference justified to 1 D.P.) = -1.07×10^{14} (adjust decimal, power to recover answer in S.N.)

3. <u>Multiply</u> two numbers in standard notation according to to the format,

 $(a \times 10^{n}) (b \times 10^{m}) = ab \times 10^{n+m}$

Example 1: $2 \times 10^{6} \times 3 \times 10^{2} = (2 \times 3) \times 10^{6+2}$ = 6×10^{6} Example 2: $4.7 \times 10^{6} \times 6.2 \times 10^{-3}$ = 29×10^{3} (product justified to 2 S.F.) = 2.9×10^{4} (express answer in S.N.)

4. <u>Divide</u> two numbers in standard notation according to the format,

 $(a \times 10^{n}) \div (b \times 10^{m}) = (a \div b) \times 10^{n-m}$

Example 1: $(7 \times 10^6) \div (2 \times 10^{-2}) = (7 \div 2) \times 10^{6-(-2)}$ = 3.5 x 10⁸ Example 2: $2.4 \times 10^5 \div 6.9 \times 10^9$

= 0.35×10^{-4} (quotient justified to 2 S.F.)

= 3.5×10^{-5} (express answer in S.N.)

Evaluating Complex Expressions Using Numbers in Standard Notation

- Do operations in established order of precedence (cf lesson 421,10-1).
- (2) Retain one more D.P. or S.F. than justified in intermediate calculations (to avoid introducing unnecessary 'rounding-off error').
- (3) Round off final answer to correct number of digits justified.

Example 1: $2.2 \times 10^2 \div (8.1 \times 10^4) + 1.7 \times 10^{-6} \times 4.6 \times 10^3$

= $0.272 \times 10^{-2} + 7.82 \times 10^{-3}$ (;, x precede +; retain 3 S.F. temporarily)

 $= 2.72 \times 10^{-3} + 7.82 \times 10^{-3}$ (convert to same power)

= 10.54×10^{-3} (last digit not significant)

 $= 1.05 \times 10^{-2}$ (answer in S.N.)

Example 2: Recall that division bar acts as a bracket, requiring evaluation of numerator and denominator prior to division, as follows:

 $\frac{4.7 \times 10^{6} + 2.1 \times 10^{7}}{6.8 \times 10^{11} \times 1.4 \times 10^{-6}}$ $= \frac{.47 \times 10^{7} + 2.1 \times 10^{7}}{6.8 \times 1.4 \times 10^{11} + (-6)}$ (convert to same powers in numerator) $= \frac{2.57 \times 10^{7}}{9.52 \times 10^{5}}$ (retain extra digit temporarily) $= 0.27 \times 10^{2}$ (answer justified to 2 S.F.)

ASSIGNMENT

1. Evaluate: (a)
$$10^{3} \times 10^{4} =$$
 (b) $10^{3} \div 10^{2} =$
(c) $10^{9} \times 10^{-3} =$ (d) $10^{9} \div 10^{-3} =$
(e) $10^{-4} \times 10^{-4} =$ (f) $10^{11} \div 10^{20} =$
(g) $10^{4} \times 10^{-8} =$ (h) $10^{4} \div 10^{8} =$

- 2. Change to a simpler form:
 - (a) $\frac{1}{10^2} =$ (b) $\frac{1}{10^6 \times 10^3} =$ (c) $\frac{1}{10^{-2}} =$ (d) $\frac{1}{10^{-9} \times 10^9} =$ (e) $-\frac{1}{10^7} =$ (f) $\frac{1}{10^{-13}} =$
 - (g) $\frac{10^9 \times 10^7}{10^6} =$ (h) $\frac{10^{-17} \times 10^{19}}{10^{20} \times 10^{-5}} =$

(i)
$$\frac{10^{-11} \times 10^{12}}{10^{-8}} =$$
 (j) $\frac{10^{21} \times 10^{-19}}{10^3 \times 10^4 \times 10^6} =$

(k)
$$\frac{10^3}{10^{-12} \times 10^2} =$$
 (1) $\frac{-10^2 \times 10^3 \times 10^{17}}{10^4 \times 10^{17}} =$

3. Rewrite the following in decimal form:

- a) 10² b) 10⁻³
- c) 10^5 d) 10^{-6}
- e) 10⁶ f) 10⁻⁴

4. Convert the following to standard notation:

(a)	165 000	(b)	.00693
(c)	37.5	(đ)	.025
(e)	2934	(f)	.00101
(g)	10000	(h)	.00020
(ì)	-249	(j)	.97
(k)	176×10^{-3}	(1)	.0027 x 10^3
(m)	957 x 10 ²	(n)	.0175 x 10 ⁻¹²
(0)	.024 x 10 ⁹	(p)	.032 x 10 ¹⁴

(a)
$$9.3 \times 10^2 + 1.5 \times 10^3 =$$

(b)
$$4.6 \times 10^{12} + 9.9 \times 10^{11} =$$

(c) 9.4 x
$$10^{12}$$
 - 1.2 x 10^{14} =

(d) 7.5 x
$$10^2$$
 - 5.0 x 10^3 =

(e)
$$4.5 \times 10^{12} - 4.5 \times 10^9 =$$

6. Express answers in scientific notation:

(a)
$$3.7 \times 10^2 \times 2.5 \times 10^3 =$$

(b)
$$2.5 \times 10^9 \div 3.6 \times 10^3 =$$

(c)
$$\frac{9.7 \times 10^{12} \times 3.3 \times 10^{10}}{9.5 \times 10^{15}} =$$

(d)
$$\frac{3.2 \times 10^{13} \times 2.2 \times 10^{-12}}{1.3 \times 10^{10} \times 9.9 \times 10^{2}} =$$

(e)
$$\frac{2.8 \times 10^{-12} \times 1.1 \times 10^{11}}{8.0 \times 10^3 \times 7.0 \times 10^{-8}} =$$

7. Express answers in scientific notation.

(a)
$$\frac{7.5 \times 10^2 + 5.0 \times 10^3 \times 2.0 \times 10^{-1}}{2.5 \times 10^2 \times 3.0 \times 10} =$$

(b)
$$\frac{(8.6 \times 10^{-14} + 9.9 \times 10^{-13}) \times 2.0 \times 10^{12}}{4.6 \times 10^3 \times 5.0} =$$

L. Haacke